高级检索

小样本条件下的典型海洋承灾体识别算法研究

An identification algorithm for typical marine disaster-bearing bodies under small-sample conditions

  • 摘要: 海洋承灾体的单体识别和精细化管理,对海洋灾害的精准预警和评估具有重要意义。由于海洋承灾体获取大量样本数据困难且成本高,难以满足传统深度学习模型的训练要求,因此本研究针对房屋、码头吊机、养殖网箱、养殖蚝排、危化品储存罐5种典型海洋承灾体,提出一种小样本条件下基于注意力机制和孪生残差网络的海洋承灾体识别方法。为增强小样本条件下模型的关键特征提取能力和泛化能力,本研究从两个方面进行了改进:①引入注意力机制SKNet对残差网络进行改进,设计了具有多尺度自适应能力的SKNet-ResNet-101网络,提高了模型的关键特征提取能力;②利用孪生网络度量学习的原理,以SKNet-ResNet-101网络为主干网络,构建基于注意力机制的双路孪生残差网络,以减少网络训练对大量样本的依赖,同时增强网络在小样本条件下的泛化能力。经过与FSOD、 Meta R-CNN等算法在海洋承灾体、 VOC、 COCO数据集上的对比测试,改进后的双路孪生残差网络在识别准确率上均有所提高,其中,在海洋承灾体数据集上提高了0.89%,在VOC数据集上平均提高了0.97%,在COCO数据集上平均提高了0.33%。该模型增强了小样本条件下网络针对复杂场景图像特征的提取能力,为构建精细化的海洋承灾体脆弱性评价和灾变预警模型提供了技术基础。

     

    Abstract: The individual identification and refined management of marine disaster-bearing bodies are of great significance for accurate warning and evaluation of marine disasters. Due to the difficulty and high cost of obtaining a large amount of sample data for marine disaster-bearing bodies, this article conducts research on the identification method of marine disaster-bearing bodies under small-sample conditions for several typical marine disaster-bearing bodies. This article introduces the attention mechanism SKNet with multi-scale adaptive ability based on the ResNet-101 network, constructs a new feature extraction network, and uses this network as the backbone feature extraction network to construct a dual path twin neural network structure, which is used to train small-sample datasets and obtain a recognition model for marine disaster-bearing bodies. According to the experimental data, compared with the original ResNet-101 network, the improved network enhances the network’s ability to extract image features of complex scenes under the condition of small-sample, and has higher recognition accuracy and stability for marine disaster-bearing bodies.

     

/

返回文章
返回